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We shall investigate the characteristics of wave propagation in an infinite hollow cir- 
cular cylinder with initial stresses produced by the presence of a screw dislocation in the 
cylinder. The initial stressed state, in which the lateral surfaces of the cylinder are free 
of a load, is determined from the exact solution of the problem of a screw dislocation with 
finite deformations. This solution is found for an arbitrary, isotropic, nonlinear-elastic, 
incompressible (including radially nonuniform) material. The equations of small oscilla- 
tions around the equilibrium state described are formulated. These equations have solutions 
in the form of dispersive waves propagating along the axis of the cylinder. The construc- 
tion of the dispersion relation reduces to a solution of a homogeneous boundary value prob- 
lem for a system of ordinary differential equations; this is done by a numerical method. In 
the numerical examples, we use a model of a material with an elastic potential in Mooney's 
form. 

Initial State. The isochoric shear and tensile deformations of a cylindrical panel are 
described by the relations [i] 

(r ~ -- r~) = p~ -- p~, 0 = % z = a~ + ~, (i) 

where p, ~, and ~ are the cylindrical coordinates of the undeformed state; r, 8, z are the 
cylindrical coordinates of points on the body after deformations; ~, a are constants; Po, ro 
are the outer radius of the cylinder before and after deformation, respectively. A deforma- 
tion of the form (i) can be realized also for a cylindrical shell which is closed in the 
angular direction. For this, the shell must be cut by the half-plane 8 = 0, the edges of the 
cut must be displaced relative to one another along the axis of the cylinder by an amount 2~, 
and then the surface of the cut must be fixed. The indicated deformation creates in the 
cylinder a screw dislocation [2] with the Burgers vector oriented along the axis of the cyl- 
inder with length 2~. We note that, in contrast to the linear theory of elasticity [2], 
here the magnitude of Burgers vector is not assumed to be small, i.e., arbitrarily large de- 
formations are studied. 

The determining relation of the isotropic incompressible elastic material has the form 
[1, 3] 

T = u1(/1, 4,  p ) F -  z~(/1, Is, p)F -1 --pE, (2) 
/~ ---- tr F, 12 = tr (F-l), 

where T i s  the  Cauchy s t r e s s  t e n s o r ;  F i s  F i n g e r ' s  d e f o r m a t i o n  measu re ;  E i s  a u n i t  t e n s o r ;  
Ix and Ia  a r e  the  f i r s t  and second  i n v a r i a n t s  o f  t he  t e n s o r  F ( t h e  t h i r d  i n v a r i a n t  e q u a l s  one 
by v i r t u e  of  the  c o n d i t i o n  o f  i n c o m p r e s s i b i l i t y ) ;  p i s  the  p r e s s u r e  i n  the  i n c o m p r e s s i b l e  
body ,  n o t  d e t e r m i n e d  by the  d e f o r m a t i o n ;  • and z~. a r e  some f u n c t i o n s  o f  the  i n v a r i a n t s  de -  
f i n i n g  the  s p e c i f i c  m a t e r i a l .  The e x p l i c i t  form of  t h e s e  f u n c t i o n s  o f  p p e r m i t s  t a k i n g  i n t o  
a c c o u n t  t he  p o s s i b l e  r a d i a l  n o n u n i f o r m i t y  o f  t he  m a t e r i a l .  

The e x p r e s s i o n s  f o r  the  measures  o f  d e f o r m a t i o n ,  c o r r e s p o n d i n g  to  ( 1 ) ,  have  t he  form 

F = ~ flfl + 7 ~f~ + 7 (~f~ + f~) + ~ , ~ + -Y ~r~, (3) 

F-1 = p2 flfl -[- r - - ~  ~'~ -]- - ~  f2f2 --~rr ~ (fJ3 + f3f2) nt--~ f3f8" 
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Here f:, f~, fs is the orthonormal vector basis of the cylindrical coordinates in the 
deformed configuration; in addition, the first index corresponds to the radial coordinate, 
the second corresponds to the angular coordinate, and the third corresponds to the axial co- 
ordinate. 

From relations (2) and (3) and the equations of equilibrium it follows [i] that the tan- 
gential stresses T,2 and T,s vanish, and the remaining components of the tensor T in the basis 
ft, f2, f3 depend only on the coordinate r. 

If the exterior surface p = po of the cylinder is not loaded, then the expressions for 
the stresses and the function p satisfy the conditions of equilibrium, and have the form 

r~ [ lZr2 p 2 ct 2 dr 

~ 8 = x i ( r  ) %z_~ p2 _ _ ~  __X2{r ) V _ _ 7 ) ~ _ . I  ' 

ar  ~ pS X2r2 

Expressions for the functions ~:(r), %2(r) can be obtained from relations (1)-(3). The 
constant ro is determined from the boundary condition ot(rt) = O, where rt is the inner radius 
of the cylindrical shell in the deformed state. 

The stresses acting on any transverse cross section of the cylinder are statically equiv- 
alent to a longitudinal force P and a torque M, which are functions of the parameters X, ,~: 

r o r o 

P(~,%)=2~S %(r) rdr, M(~, ~)=2~J'T~(r)r 2dr: (5) 

r i r I 

The coefficient of axial stretching I is then determined from the condition P = 0. l 
numerical analysis for Mooney's material showed that any value of the parameter ~ corresponds 
to a value of I < I, i.e., with axial displacement under conditions such that there is no 
longitudinal force, the cylindrical shell is compressed in the axial direction. 

Linearized Equations of Motion. Let us assume that a small motion, defined by the dis- 
placement vector nw, where z'is a small parameter, is superposed on the initial deformed 
state. Then the linearized equations of motion are described by the equations [i, 3] 

a2w 
V . O = m  Or-----T-, 0 T'--(Vw)T.T, V.w=O,  (6) 

d O O O 
T , ' = - f f ~ T ( a + ~ w )  ln= o, V = f l ~ r  -~f2r -~- -~- fa~  z , 

where t is the time, m is the density of the material, R is the radius vector of the starting 
stress state, and V is the nabla operator in the metric of the prestressed body. 

Since the lateral surfaces of the shell are assumed to be free of loads, the boundary 
conditions for Eqs. (6) have the form 

f ~ - O = O  at r = n ,  r0. ( 7 )  

The equations (6) have so lu t ions of the form 

A(on+~/%-t~)/v (0 ! 
,:, / W ( r ) / .  (8) 

tq (0) 
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Here v is a dimensionless wave number, n is an integer, ~ is the frequency of oscilla- 
tion, w = uf~ + vf2 + wf3, q = --p'. 

Substitution of the solution (8) into Eq. (6) and the boundary conditions (7) gives a 
homogeneous boundary value problem for the functions U, V, W, and Q for an isotropic incom- 
pressible material of general form. For a homogeneous cylinder consisting of Mooney's 
material (• -- 2C~, 12 = 2C2; Ct, C2 = const), this boundary-value problem is written as 
follows : 

V" (fi~ + 3 x ~ )  + V' [~'~ + 3, ( ~ y ) '  + p/x~ + R -~ (~, + 3 ~ , ) ]  + (9) 

+ v [ -  (~ + ~) ~ - ~ R - ~  + 2 ~ R - ~  +~, (~  + .~T ~) - .R -~ ( 3 ~  + ~ 7  ~) + 

+ ~o~ / .1 ]  + v' [(~7 ~ + ~ A )  ~"R-1 - ' , x - ~ Z - ~ R - ~ ]  + v [ -  2~.z-~7~R-~ - 
- 2 ~ = ~ R - ~  + . R - ~ z - ~ ' ~  - ~ . R - ~  (3ff1~ ~ + ff7~)] + w '  [ - - . R - ~ - ~ x - ~ g n ~  + 

+ • (~-2 + ~11)] + 2 •  ..~ Qrol• = O, 

v,, (~ + .~#~) + v, [~'~ + .  @A)' + ~n-~ d + -~)]  + v [ 2 ~ n - ~  - 

_ z-~l~i-~n-~ (.~ + ,~) + ~a~ - v,n-~/• _ • (~7 ~ § g~g~)' - 3n~.lhg~n-~ _ 

- .~T~ n -~  - ~ n . ~ , ~ - ~ - ~ x  - ~  + .~ ,~ , ,~  + .~r~O~:/.~] + U ' . n - ~  [ ~,~ ( ~7~ + ~ )  - -  

- -  U~Z-2z-~] + U [ ~nn- i /  /.x + 2~n~-~-~7~ + 2 ~  ~,~ -~ -- .~ . -~R-~x  -~ § 

+ ~ ' - ~  (3~A + ~79] - . , z - ~ - . x - .  (w" + n-~w') + w [2~ .~x-~-~n  -~ - 

--  2~tV2Ux-1)~-2R -1 ~- in)~-2~4R - ~  -~ ~z~a~4in~R-1] -~ i n R - l r  oQ/• 1 = O, 

w,, ( ~ + z - s . )  + w, [ ~ + ~IR -~ + ~-~.~-1] + w [ ~ + 3~-~r - ~ - ~ - ~ +  
+ 2 ~ L ~ , ~  -~ - . ~ - ~ - ~  - 2 ~ . ~ - 1 z - ~  -~ + ~ 0 ~ / . 1 ]  + v '  [.~7~, + 

+ .~z-~ - ~ . ~ - ~ - ~ - ~ ]  + v [ ~ / I . i  + ~ (~7~)' - ~.~-~R-~x-~ + 

+ . ~ 7 ~ - ~  + . ~ - ~ - ~ ]  - . ~ - ~ n - ~ z - ~  (~" - ~-~v') + v [ , . x -~z -~-~  (en ~ -  

-- I) -{- n~i~sinwR--I -{- inw,)~--2R - I  - -  29v2xx-l~L-2R -1 ]  -~- Qv re/, 1 = 0; 
u '  + R -~U + i n n - ~ V  + ~ W  = O. ( i 0 )  

The following notation is used in the formulas (9): ~ : 0:/(Xr) ~, ~ = ar/p:, 8~ : 
X ~ + ~2/p=, R = r/ro, ~ = >~=/u~, ~ = ~/po, x -- ro/oo. The prime indicates differentiation 
with respect to the dimensionless variable R. Equation (i0) is the condition of incompres- 
sibility, written in a cylindrical coordinate system. 

The boundary conditions on the lateral surfaces are as follows: 

(~ § ~.~T ~ + ~/.~) v, + ~o/"~ =o, 
(I~ + xf~l~) v'  + v [ -  pn -V•  - . n  -~  (~7 t + I~I~)] - w'v• -~ + (11) 

+ v~-1[~..  (~T, + ~,~_.) _ ~ . ~ - ~ - ~  + ~p/.1] = o, 

(~ +'~-~.)w,-~.x-~R-,x-~v, +~.~-~-~x-lv +u[~(~7, +~-~) ~n,.Z-~a-~x-~ + ;W.~] =0, 

R - -  t ,  rl /r o. 

The c o n d i t i o n  f o r  t h e  a b s e n c e  o f  c o m p r e s s i v e  f o r c e s ,  b y  v i r t u e  o f  (4)  and  ( 5 ) ,  l e a d s  t o  t h e  
e q u a l i t y  

(1 - -  %2) (2,~ - -  ~ - z  _ ~ - a x  2) _ 2l~2~-1 in  %2 _{_ %2g-~ in '%x2 + %~ - -  t ( 1 2 )  
~x ~ 

- z ~ ; ~ - ~ , ,  z 2 + .  [ ( l  - z ~) (3 - z ~ - ~  - z - ~ - ~  - ~ z - ~ - : )  + (2 - 2~.~ ~ - z ~) ~ z ~ + ( 2 ~ z  ~ 2 + z ~ ~- '~) ~ ~x~ + x~ - ~1 - - ~ j = o ,  

where X = P~/Po. 

Nontrivial solutions of the boundary-value problem (9)-(11) exist only for a definite 
dispersion relation: the dependence of the phase velocity of the wave mro/~ on the frequen- 
cy 03. 

The case n = l corresponds to waves of bending--torsional oscillations of the cylinder. 
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The boundary-value problem (9)-(11) with condition (12) is numerically solved by a meth- 
od which in many ways is analogous to [4]. 

In order to proceed to the investigation of the stability of a cylindrical shell sub- 
jected to a screw dislocation, it is sufficient to set ~ = 0 in Eqs. (8). 

In this case, the value n = 1 corresponds to a rod-shaped bulging of the cylinder. As 
in [4], it can be shown that solutions of the form (8) with n = 1 in the sections of the cylin- 
der z = 0, z = I = ~ro/~ satisfy the conditions of hinged support along one axis of the 
transverse section and conditions of slipping support along the other axis, orthogonal to 
the first one. 

Numerical Results. We shall restrict ourselves to a presentation of the results for a 
cylindrical shell consisting of a non-Hookian material. For this, it is sufficient to set 
• 0 in the relations (9)-(11). The results of the calculations for n = 1 and for a ratio 
of the inner radius to the outer radius equal to 0.8 in the undeformed state are presented in 
Fig. i. The first three dispersion curves are constructed. The wave number v is plotted 
along the abscissa axis, and the dimensionless value of the phase velocity of propagation of 
bending--torsional waves with c = (m/~1)~/2~ro/~ is plotted along the ordinate axis. The num- 
bers 1-3 denote the curves corresponding to a definite value of the parameter p, which char- 
acterizes the magnitude of Burgers vector (respectively, p = 0, 0.3, 0.5). It turns out that 
the higher the initial deformation, the lower the phase velocity of the wave. The points of 
intersection of the curves with the abscissa axis are points of elastic instability (bi- 
furcation of the equilibrium) of the cylinder, caused by the presence of the screw disloca- 
tion. 

The results for the problem of stability are presented in greater detail in Fig, 2. The 
dependences of the critical magnitude of the deformation p, on the parameter vo, related to 
the geometric parameters by the relation ~o = ~0o/l, where 2Z is the wavelength of the bulg- 
ing deformation wave, are constructed for X = 0.9 for n = i, 2, 3, 4, and 5, which character- 
izes the form of the loss of stability. The rodlike form of the bulging (n = i) and of the 
shape determined by the value n = 2 is characterized by the increase in the parameter p, with 
increasing ~o. The opposite holds for forms for which n > 2. 

l. 
2. 
3. 
4. 
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